
Boot The Bot: Java-based Simulation, Code
Generator and Live Controller for ABB Robots

Richard Dank

Institute of Architecture and Media, Graz University of Technology, Austria
Email: dank@tugraz.at

Abstract—Half a century has passed since the introduction
of the first Unimate. Now robots finally have arrived in the
minds (and projects) of creatives worldwide. This paper
discusses issues concerning algorithmic and innovative
offline programming of ABB robots in the context of artistic
and architectural purposes. It compares existing software
tools for generating RAPID code and introduces Boot The
Bot – a standalone, cross-platform digital tool to generate or
import points plus extra data and export valid RAPID code
for immediate execution on ABB robots. This program is the
basic software application for several projects and
subsequent research themes in TU Graz’s field of expertise
Resource-Efficient Non-Standard Structures. And it can
operate live and online.

Index Terms—Project and practical application of
Algorithmic Design, Digital and physical robotic interfaces,
Robotics in art and architecture, 1:1 production,
Java/Processing.

I. INTRODUCTION

While harmonized program code gained currency for
regular CNC systems, a standard for robot code could not
be implemented yet.

Plotters, the very first computer numerical controlled
(CNC) machines that made it out of the factory into the
offices, basically run on vector graphics markup
languages. One of those derivates originally used on
Gerber Scientific plotters and further developed and
adapted at the MIT Servomechanisms Laboratory in the
50s today is the de facto standard for CNC programming
languages: G-Code. This method is so widely used that it
was accepted early by the Electronic Industries Alliance
(EIA), then incorporated by the Deutsche Institut für
Normung into DIN 66025 and by the International
Organization for Standardization into ISO 6983. Though
most manufacturers require a slightly different syntax
they all rest upon G programming language. One could
say that they just speak different dialects.

As mentioned before, robots do not offer such
convenience. The big companies use completely different
proprietary programming languages. Industrial robots

 Manuscript received October 24, 2012; revised November 13, 2012;

accepted November 13, 2012.
Fig. 1., 2., 3. and 5. adapted graphics by ABB. Fig. 4. copyright

Richard Dank. Fig. 6. and 7. photographs by Philipp Sackl. Fig. 8.
photographs by Konstantinos Tzivanopoulos and Thomas Raggam.

produced by Unimation Inc. (now owned by Stäubli1 [1])
for example rely on the Variable Assembly Language
(VAL), KUKA2 on KUKA Robot Language (KRL) and
ABB 3 machinery is controlled with RAPID Code. [2]
They fundamentally differentiate from each other – not
only in terms of semiotics, semantics and syntactics. The
interpreters require entirely different datasets to be able to
move the robotic arm. This leads to several advantages as
well as drawbacks.

In the following paragraphs I would like to quickly
sum up these characteristics of basic motion instructions
and data types for ABB robots, so one could grasp the
challenges there. Later I would like to present three other
superb applications for RAPID offline programming, to
be able to assess Boot The Bot (BTB). In the end the text
shall outline some of the projects designers and artists
have made utilizing BTB software and ABB machines.

II. ABB RAPID CODE: TOOLS, WORK OBJECTS, TARGETS

AND INSTRUCTION SETS

Of course there are quite a few motion instructions,
still I want to explain only the seemingly three most
important of them concerning ABB six axes robots.

 MoveAbsJ directly rotates the six axes of the robot to a
distinct joint position – very common at the beginning
and end of any sequence or for ‘untangling’ the robot’s
arm. The instruction below makes the tool0 (the flange
itself) move along a non-linear path to the absolute axes
positions (prior stored by user definition in the joint
target) jPos_0000, with the default speed data v250
(velocity) and zone data fine (precision).

MoveAbsJ Joints_0000 , v250 , z100 , tool0 ;

MoveJ is used to move the robot tool to a certain

position on the work object not using a straight line –
typically used for picking and placing things. In practice
this means without simulation one cannot predict the
movement of the machine. All constants (Target_0000,
weldingPen and synthMat0) must be predefined, so that
the data is available when calling the instruction.

1 http://www.staubli.com/
2 http://www.kuka-robotics.com/
3 http://www.abb.com/robotics/

On the other hand MoveJ avoids any problems with the
rotation of one of the six robot axes (Fig. 1, left). Plus
you don’t run into singularity troubles that occur when
two robot axes come close to being aligned.

MoveJ Target_0000 , v200 , z0 , weldingPen\WObj:=synthMat0 ;

Fig. 1. MoveJ is a fast and robust but mostly unpredictable way to

move between two points (left). Whereas MoveL describes a linear
path, it can run in a number of problems – e.g. the start point and the
destination point are too far apart (right). [3]

Finally MoveL is used to move the tip of the tool

linearly to a given destination (Target_0001). It is widely
used for most operations, still it poses major risk to
executable RAPID code under certain conditions (Fig. 1,
right).

MoveL could result in singularities (Fig. 2). But what’s
more, when the robot needs to pass distant targets or
change the orientation of the tool a lot, the software
controller of the robot is not able to carry out the task, as
none of the six axes can be turned more than 90 degrees
within a single instruction.

MoveL Target_0001 , v100 , z5 , weldingPen\WObj:=synthMat0 ;

Fig. 2. Wrist singularities occur when axis 5 is 0 degrees (left). An
arm singularity where the wrist center and axis 1 intersect (right). [3]

The definition of the robtargets is tricky as well. The

first set of triple values in box brackets are the X-, Y- and
Z-coordinates of the tool tip. The second four values form
the orientation of the tool in quaternions, a complex
notation of three-dimensional rotations. Both must be
calculated in relation to the work object the target later is
assigned to. The last list (9E9,9E9,9E9,9E9,9E9,9E9) is
reserved for controlling additional axes like linear tracks.
In the code excerpt beneath there is actually none.

However, the third array indeed requires most of the
attention. [1,1,-1,1], for example, defines the
configuration of the robot. Considering axis 4 and 6 of
the robotic arm, if the tool is able to reach a target at all
(Fig. 3, left), it can be done in at least four different
configurations. But depending on the model specification

and the position/rotation of the target the number of
possibilities increases dramatically (Fig. 3, right). And
ABB robots require valid configuration, otherwise the
exported code won’t work at all.

CONST robtarget Target_0000 := [[257.95,474.5,0.0] ,

[0.060166642,0.010343712,-0.9836818,0.16924272] , [1,1,-1,1] ,
[9E9,9E9,9E9,9E9,9E9,9E9]] ;

Fig. 3. Two different wrist (left) and arm configurations to attain the

same position and orientation (center). Quarter revolutions for the joint
angles as final target configuration (right). [3]

Although the data types for the tool (tooldata) and the

work object (wobjdata) contain additional information,
the definition is quite similar to the robot targets. But all
details shall not be delineated here. For further
information see e.g. the technical reference manual for
the RAPID programmer from ABB Robotics Products
[4].

III. OFFLINE PROGRAMMING IN ROBOTSTUDIO, PI-PATH

AND HAL

RobotStudio of course is ABB’s very own Software
product. It gives you full access to on- and offline
programming. This includes the generating of complete
programs for example from any linear motion data you
import. Apart from that it is ‘the’ perfect simulation tool
for any RAPID code as it is built on the
VirtualController, “an exact copy of the real software that
runs your robots in production.”4

 With all the high performance it still has some
shortcomings. First and most important of all it is closed
source with no scripting environment. This means
everything has to be done manually. Evidently this means
that it is by definition not capable of “customized
scripting” – “fluent bottom-up architectural design […]
workflow” [5]. And it is not intended to be.

Secondly, once you have a tool path and the
position/orientation of the targets – which is of course
easy to calculate anyway - the automatic definition of the
robot targets is rather slow. RobotStudio needs to
completely simulate the robotic arm’s motion in order to
find out any problems with the configuration. This is very
accurate, and it should be! But if anything unexpected
happens – remember the singularity- and rotation-
troubles outlined in the prior chapter – the user must
again solve this by hand. Plus if there are thousands of

4 http://www.abb.com/product/us/9AAC111580.aspx

targets, it might not be able to compute that number of
instructions after all.

As a result RobotStudio is a perfect tool for a small
number of, especially taught, targets and as a final
simulator before going into production.

 Master Automation Group’s (MAG)5 Pi-Path should
be briefly mentioned here as an easy yet powerful tool to
convert three or five axes CNC code into multi-axes robot
programs. As it is basically meant to translate pre-
computed APT-files, it needs manual input on errors as
well. It is ultra-fast in writing the configuration data, but
again can not be programmed. It is perfect for milling
procedures, can be ‘abused’ for other tasks, but is not
able to parse elaborate code like different motion
instructions etc.

Finally we want to take a look at HAL. Alike
robotsinarchitecture’s Parametric Robot Control (PRC)6
for KUKA, HAL is a plug-in for Rhino’s 7 generative
modeler Grasshopper 8 . It was developed by Thibault
Schwartz9 in 2011 and is revised ever since. The current
unlicensed version 0.03 can simulate ABB robots,
whereas the full version is also able to export RAPID
code. Just like so many Grasshopper extension out there
today, it is an easy to implement way to program ABB
industrial robots. It contains a large library of
components, including default objects for wire cutting
and milling. And it is fast. Backed by the vast potential of
Rhino it can do almost everything one might call for.
Nevertheless we want to take a look at what it cannot do
– at least yet.

As mentioned earlier robots just move from one target
to the next, which poses a problem for several operations.
HAL produces code for points well that are close to each
other, but it doesn’t take configuration problems or
singularities into account – unless you solve them
manually. Apart from that it assumes that there is only
one viable configuration for one target, which again could
make things harder.

To sum it up, HAL is sophisticated enough for
ingenious applications, still straightforward so that even
inexperienced users can work with it. Definitely a
recommendation for everyone that works with
Grasshopper – though this means being chained to
Windows as well.

IV. BOOT THE BOT

So after these observations on other software packages,
why should there be room for another fish in the pond?

Soon after we at the Graz University of Technology
(TUG)10 decided to acquire ABB robots in 2009/10 it
became clear that we needed to directly control the

5 http://www.mag.fi/
6 http://www.robotsinarchitecture.org/kuka-prc/
7 http://www.rhino3d.com/
8 http://www.grasshopper3d.com/
9 http://thibaultschwartz.com/
10 http://www.tugraz.at/

machines in order to be able to produce remarkable
output. At that time HAL was not around yet. Otherwise
we might have considered enhancing the release and
making it suitable for our demands. On the other hand
RobotStudio and Pi-Path are not versatile enough and can
only be deployed as post-processors. Moreover we agreed
that, in the long run, it is valuable and rewarding to be
able to understand and manipulate a machine of that
capability on an advanced level – especially for architects
and artists. We needed to understand the tool we were
using as thoroughly as possible. So we – Jacob Wegerer
and I – started to develop our own kinematic solver: Boot
The Bot (Fig. 4).

Fig. 4. Boot The Bot with the help window faded in: Left the

interactive visual surface, right the console output.

We wanted the application to be as open as possible.

Thus it is written under the creative common license in
Java11 with the implemented integration into Processing12
– everything open source. We deliberately did not fall
back on a CAD backbone like Maya/MEL 13 or
Rhino/Grasshopper and of course we had to take a loss
there. Designers that are not willing and/or able to
calculate the initial points of the motion paths in 3D will
not be able to use the full potential. But as all architecture
students at the TUG already have the mandatory class
Digitale Methoden der Gestaltung (DM2) in their third
semester, we accepted that. In DM2 students are obliged
to take their first steps into contemporary algorithmic
design methods. In essence we teach them the basics of
programming there [6].

Thus we were able to open BTB to all software
platforms. Moreover, by using Java we made it possible
that projects could easily access live and/or online input.
Another interesting aspect of BTB is that data, like the
measured work objects or tools on the real robot, can be
read and interpreted. So you can make declarations both
ways – either generate them or grab existing ones.

However the key feature is the automatic configuration
of the targets. Multiple possible configurations are
calculated and due to several parameters BTB then
decides which is best. If there is still no satisfying
solution, the motion path is interpolated and additional
crucial targets are added. On the other hand a general

11 http://www.java.com/
12 http://processing.org/
13 http://autodesk.com/maya/

interpolation of linear movement would lead to a lot of
unnecessary lines of code. Depending on the number of
instructions the robot should execute, this is vital. We
don’t want to run into memory overflow on the machine.

By the way, all potential configurations can be set
manually as well. Just like in RobotStudio. Even
singularities can be avoided to a certain extend. If
possible the robot just moves around them.

Fig. 5. A fully working, yet complex motion path can be

programmed manually like in the case above [3] or automatically
generated with BTB.

As we didn’t want to address programmers only, there

are several connections for interchanging data. BTB can
import formats like 3DM from Rhinoceros 3D,
Autodesk’s closed source DWG and the widely
implemented Drawing Interchange File Format DXF.
Thus BTB can be linked to virtually any existing CAD
software out there. Furthermore it can open and save a
specially designed plain-text exchange format. So any
scripting language can generate the basic coordinates –
plus additional target data if desired –, pass it on and use
BTB just as a kinematic solver, simulation engine and
RAPID code generator.

Boot The Bot has several displaying and console
output modes implemented by default. It can be toggled
between orthographic and perspective view. Plus if
delivers a large set of standard and randomly generated
motion paths. All of that is very valuable for setting up
the real robot, the tool, the work object and for general
debugging.

But most of all it is designed for live input connections
and as programming extension for Java-based
applications. This means that there is e.g. an especially
integrated patch for the Processing sketchbook where to
write your own code that then generates the targets.
Consequently these figures can originate from milling
paths, image data, some type of interaction or any other
kind of algorithmically converted information. It is
completely up to the user’s imagination and creativity.

In summary, there are two ways of utilizing BTB. First
of all one can just take it as a multi-platform post-
processor for converting target information into RAPID
code to address ABB robots. The environment allows for

• Importing a variety of CAD-formats and plain-text
data delineating motion paths

• Different visual and textual screen displaying
modes, orthographic and perspective views for debugging

• Additional positioning, motion and timing settings
• Tool and work object import and export
• Full simulation of the complete workflow

• Export working ABB RAPID code.
• Direct physical control over the robot via ftp

connection.
Nonetheless, the intrinsic intention of BTB is the

standalone version. It covers all the features above but
additionally enables the user to

• Compute the robot’s motion by self-written
functions completely within BTB .

• Grab live input and/or interact with the output.
• Generate (convert data), verify (simulate the

sequence) and finalize (write RAPID code) all in one
non-linear procedure.

• Run it locally or on the web.
And again I need to mention the fact that everything is

open source . So if someone is not happy with the
automatic configuration parameters, the interpolation
steps, the interpretation of fragmentary motion data or
even the colors

• Everyone can adapt the code for their own needs.

V. PROJECTS USING BTB

But of course only the implemented projects bring such
software to life – at least from the point of view of the
creatives. The current chapter will exemplarily present
some significant works that built upon BTB. Obvious
areas of operations – like milling and wire-cutting – shall
not be referenced here. I will focus on standalone,
interactive experiments at the transition between art and
architecture. Most of them originated in the vicinity of
the Design Master Studio papier peint14 – conducted by
Richard Dank, Christian Freißling and Urs Hirschberg at
the Institute of Architecture and Media (IAM) 15 . The
leading idea was “based on Semper’s notion that it is the
surface of walls that most strongly influences our special
perception.” It “was about developing surface effects and
their prototypical production with the help of robots, with
the aim of redefining a precise architectural setting.
According to their designs, students had to write their
own programs, […] construct the proper tools for the
robot, and finally have the robot […] turn them into
physical reality 1:1 scale.” [7]

For example motionMATRIX by Marvi Basha tracks
traces of a stair-climbing human body and then
superimposes the robot’s joint rotations. The resulting
curves were then realized with an UV-color-pen in the
hallway up to TUG’s Zeichensaal 3 and 4 (Fig. 6, left).

Kathrin Hiebler’s Raumverfremdung is a virtual
dissolution of a roof truss corner. An algorithmic,
anamorphic distortion and expansion of the purlin
construction was processed into a grayscale developed
view and realized with a rotating stamper. So depending
on the distance to the artwork one perceives the imprints
of varying intensity or catches sight of an infinite network
of random wooden beams (Fig. 6, center).

14 http://iam.tugraz.at/studio/w10/
15 http://iam.tugraz.at/

Stefan Höll took papier peint – French for painted
paper or simply tapestry – literally. He programmed
Individual Wallpaper where one could sketch on a
graphic tablet. Depending on the pressure and drafting
speed the image was transmuted into line patterns (Fig. 6,
right). The predefined wall geometry then led to
automatic tiling for the production with different pens on
paper-rolls that were transported into place by a
customized, Arduino-controlled16 conveyor table.

Fig. 6. Project posters by Basha and Hiebler, final Image of

Raumverfremdung and Höll’s Individual Wallpaper manipulated on a
Wacom board17 (from left to right).

Peter Kaufmann and Robert Schmid decided to

parametrically bleach two diagonally opposite standing
couches. One of them shows the vestige of the authors
sitting, the other the logo of their drawing studio – a stag
with L-system-horns (Fig. 7, left). They put together a
dye dripping infusion bottle tool for the ABB robot to
carry out the intervention Die Anwesenheit der
Abwesenden und Hirsch.

Simone Mayr used self-invented font to brush-paint
enamel on thermoplastic road marking. Ohne Worte was
designed as a flame-scarfed guidance system for a large
architectural office, where the blank spaces of a
theoretical text unveiled the names of the senior partners
(Fig. 7, right).

[SYN]these is the attempt to make sound graphically
tangible and legible through netlike diagrams. Paul Pritz
rendered characteristic values of the assigned
compositions with a pen-squeezing semi-fluid paint
dispenser on sound absorbing dungaree for a rehearsal
room (Fig. 7, center).

By the way, all these projects, and more using BTB,
can the watched in action on IAM’s Vimeo site18. “The
[…] hereby presented design- and research-approach is
[…] always based on the possibilities and constrains of
the actual materialization, as its properties and the scope
of fluctuation of its variables are embedded into the
computer-based generative processes.” A quote I
borrowed from Achim Menges [8].

16 http://arduino.cc/
17 http://www.wacom.com/
18 http://vimeo.com/ioiiii

Fig. 7. Kaufmann/Schmid’s bleached deer on a couch, their and

Pritz’s tool, extracts from the robot-produced [SYN]these and Mayr’s
guidance system (from left to right).

Finally I want to quickly present the China-ink

Painting Robot, because the full capacity of Boot The Bot
can be perfectly depicted there. In 2011 a precursor was
shown at the 200 year anniversary 19 of TUG. There
visitors were invited to be sketched live in silver on
glossy black cardboard by an IRB 140. They could sit
down in front of a regular webcam, switch between
different drawing styles and interact via mouse and
screen to finalize their portrait. When satisfied, the
application computed the motion paths, generated the
RAPID code and copied the program for batch processing
to the robot (Fig. 8, left). A few minutes later they could
take home a piece of art.

At the exhibition By all means – analogue/digital
experimental settings20 in 2012 the robot painted texts,
pictures of the exhibition and the visitors onto the glass
façade of the House of Architecture (HDA) (Fig. 8,
center). It was a more leisurely approach, as the Chinese
ink and the vertical surface required a much slower
operating procedure. So the process was redesigned and
the performative aspects were highlighted for the exhibit.
Finally the robots action and the imperfectly predictable
behavior of the brush interacting with the transparent
paper mounted on the glass background concluded in a
surprisingly tense blending of the analog and the digital
(Fig. 8, right).

Fig. 8. Two Pictures from TUG’s 200 years anniversary, the China-

ink Painting Robot plus Wolfgang Tschapeller, Peter Cook and Marjan
Colletti picking up their portraits at the HDA (from left to right).

VI. CONCLUSION AND OUTLOOK

“Today, innovative projects typically result from the
collaboration of multidisciplinary teams that join forces
from the initial design stages on.” [9] That requires not
only proficient teamwork but in this day and age a

19 http://portal.tugraz.at/portal/page/portal/TU_Graz/2011
20 http://www.hda-graz.at/event.php?item=6961&lang_id=en

seamless incorporation of a wide range of tasks
preferably in a single, open-source, platform independent
application as well.

BTB grew for almost three years now. And it fulfilled
the needs of most of the demands we’ve ran into when
operating ABB robots. The current version is 2.8, but still
there are optimizations to be made – namely in the range
of the quaternion normalization, the final robot and tool
configuration. And of course colleagues at TUG and
project partners elsewhere are constantly requesting new
facilities and functionalities that we wish we would
already have. As a consequence we keep customizing and
developing Boot The Bot for new challenges – at least
occasionally.

“An understanding of digital design as a unique set of
design logic demands a formulation of the symbiosis
between the product of design and the way it is now
conceived, generated and materialized in digital media.”
Reframing Oxman’s [10] statement, BTB provides this
conjunction between the most open way of formalizing
an idea – alphanumeric code – and the most versatile
machine available – the robot.

ACKNOWLEDGMENT

The evolution of Boot The Bot started with stirring
stimulus at IAM and energetic support of ABB –
especially by Michael Roth. Apart from him Richard
Dank certainly needs to give thanks to Jacob Wegerer.
His contribution and collaboration exceeded his
engagement as teaching assistant by far. And finally he
would like to lay great stress upon the inspiring efforts
and wonderful projects of all the peers and students that
used BTB ever since it came out.

REFERENCES
[1] Munson, G (2010), “The Rise and Fall of Unimation Inc.“, Robot,

September/October 2010, no. 24, pp. 36-41.
[2] Wenz, M 2008, Automatische Konfiguration der

Bewegungssteuerung von Industrierobotern, Logos, Berlin, p. 95.
[3] ABB Robotics Products (ed.) 1998, RAPID Reference Manual,

Västerås.
[4] ABB Robotics Products (ed.) 2010, Technical reference manual:

RAPID Instructions, Functions and Data types, Revision J,
Västerås.

[5] Braumann, J and Brell-Cokcan, S 2011. “Parametric Robot
Control: Integrated CAD/CAM for Architectural Design“,
Proceedings of the 31st Annual Conference of the Association for
Computer Aided Design in Architecture, ACADIA, Calgary, pp.
242-251.

[6] Dank, R 2011. “Why MEL?“, Proceedings of the 1st International
Symposium on Algorithmic Design for Architecture and Urban
Design, ALGODE, Tokyo.

[7] Dank, R and Hirschberg, U 2012, “Papier Peint“, GAM: Dense
Cities, no. 8, Springer, Wien/New York City, pp. 320-321.

[8] Menges, A 2009, “Uncomplicated Complexity“, GAM:
Nonstandard Structures, no. 6, Springer, Wien/New York City, pp.
140-151.

[9] Fellendorf, M and Hirschberg, U 2008, “Design and Construction
Science“, Forschungsjournal der TU Graz: Fields of Expertise,
special issue, pp. 16-21.

[10] Oxman, R 2008, “A challenge for digital design and design
pedagogy: theory, knowledge, models and medium“, Design
Studies, vol. 29, no. 2, pp. 99-120.

Richard Dank's main area of activity -
scientifically and in practice - is the interweaving
of art and architecture with/in the field of digital
media. Collaborating with several architects,
artists and institutions worldwide his oeuvre
oscillates between designing and design - from
graphics and videos, over installations and web
applications, to construction and building -,
always with the focus on algorithmic and
interactive projects on- and offline. In the course

of these encounters intense working residences and study journeys to
America, Asia and all over Europe have been realized.
 Dipl.Ing. Dank received his Diplomingenieur (Master of
Science) in architecture from the Graz University of Technology in
2006 and is currently working independently as richdank.com,
moreover as a partner in the architecture cluster 0704 and
teaching/researching as fulltime Universitaetsassistent (assistant
professor) at the Institute of Architecture and Media.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF005b0042006100730069006500720074002000610075006600200027005100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065007200200044007200750063006b0027005d002000560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

